Spatial non-adiabatic passage using geometric phases

نویسندگان

  • Albert Benseny
  • Anthony Kiely
  • Yongping Zhang
  • Thomas Busch
  • Andreas Ruschhaupt
چکیده

*Correspondence: [email protected] 1Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan Full list of author information is available at the end of the article Abstract Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage

We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...

متن کامل

Topological properties of Berry’s phase

By using a second quantized formulation of level crossing, which does not assume adiabatic approximation, a convenient formula for geometric terms including offdiagonal terms is derived. The analysis of geometric phases is reduced to a simple diagonalization of the Hamiltonian in the present formulation. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing...

متن کامل

Geometric phases , gauge symmetries and ray representation

The conventional formulation of the non-adiabatic (Aharonov-Anandan) phase is based on the equivalence class {eiα(t)ψ(t, ~x)} which is not a symmetry of the Schrödinger equation. This equivalence class when understood as defining generalized rays in the Hilbert space is not generally consistent with the superposition principle in interference and polarization phenomena. The hidden local gauge s...

متن کامل

Geometric phases for mixed states and decoherence

The gauge invariance of geometric phases for mixed states is analyzed by using the hidden local gauge symmetry which arises from the arbitrariness of the choice of the basis set defining the coordinates in the functional space. This approach gives a reformulation of the past results of adiabatic, non-adiabatic and mixed state geometric phases. The geometric phases are identified uniquely as the...

متن کامل

Fast non-Abelian geometric gates via transitionless quantum driving

A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017